MA 114 MathExcel Supplement - Worksheet F: Convergence/Divergence Tests & Power Series

- 1. Concept Check: Write out all hypothesis and conclusions for the following tests.
 - Integral Test
 - Comparison Test
 - Limit Comparison Test
 - Alternating Series Test (Conditional vs Absolute Convergence)
 - Ratio Test
 - Root Test
- 2. Determine the values of $\alpha \in \mathbb{R}$ for which

$$\sum_{n=1}^{\infty} \left(\frac{\alpha n}{n+1}\right)^n$$

converges.

3. In each of the following cases, discuss the convergence/divergence of the series $\sum_{n=1}^{\infty} a_n$ where a_n equals:

(a)
$$\frac{n!}{e^{n^2}}$$
 (b) $\frac{n^2 2^n}{(2n+1)!}$ (c) $\left(1 - \frac{1}{n}\right)^{n^2}$ (d) $\frac{n^2}{3^n} \left(1 + \frac{1}{n}\right)^{n^2}$ (e) $\sin\left(\frac{(-1)^n}{n^p}\right), \ p > 0$ (e) $\sin\left(\frac{(-1)^n}{n^p}\right), \ p > 0$ (f) $(-1)^n \frac{(\ln n)^3}{n}$ (f) $(-1)^n \frac{(\ln n)^3}{n}$ (g) $(-1)^n \left(n^{\frac{1}{n}} - 1\right)^n$ (g) $\left(1 + \frac{2}{n}\right)^{n^2 - \sqrt{n}}$ (h) $\frac{2^n + n^2 - \ln n}{n!}$

- 4. What is the difference between a Series and a Power Series? What is the "Radius of Convergence" and how do you find it?
- 5. Determine the Radius of Convergence for the following series.

(a)
$$\sum_{n=1}^{\infty} \frac{(-2)^n n}{5^n} (x+3)^n$$

(b) $\sum_{n=1}^{\infty} \frac{2^n}{n} (4x-8)^n$
(c) $\sum_{n=1}^{\infty} n! (2x+1)^n$
(d) $\sum_{n=1}^{\infty} \frac{x^n}{n^n}$
(e) $\sum_{n=1}^{\infty} \frac{x^{2n}}{(-3)^n}$
(f) $\sum_{n=1}^{\infty} \frac{(2x)^{2n}}{(-5)^n}$
(g) $\sum_{n=1}^{\infty} x^n$
(h) $\sum_{n=1}^{\infty} (x-a)^n$
(i) $\sum_{n=1}^{\infty} \frac{x^{2n}}{(-3)^n}$

- 6. Use your knowledge of Geometric series to write the following as a series, then find the radius of convergence.
 - (a) $\frac{4}{1-x}$
 - (b) $\frac{1}{1-x^2}$
 - (c) $\frac{1}{2x-x^2}$
- 7. Consider the power series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$.
 - (a) Find the radius and interval of convergence of this power series.
 - (b) Express the derivative of this power series in summation notation. (You may find it helpful to write out the first few terms.)
 - (c) Express the antiderivative of this power series (with C = 1) in summation notation. (Again, you may find it helpful to write out the first few terms.)
 - (d) What do you notice about the original series and your answers to parts (b) and (c)?
 - (e) Can you think of a function we know well that also has this property?